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Abstract 

Several applications of atring models to QCD are studied. This is me 

tinted by a new &ring model of Pofyakov, where a term involving the 

extrinsic curvature of the surface is added to the action. This acta to 

smooth out a surface and 80 produce a ‘smooth” string; it represents 
a eonai&nt theory of strings in four dimensions. Aho considered are 

%ea* strings - string with heavy termions tied to their enda. 
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waled by Uniwrrltles ftesawch Assoclatlon Inc. under contracl with lhe United Slates Department of Enem 



-l- FEBMILAB-Conf+?S/ 171-T 

I. Introduction 

The original motivation of string theory was as an attempt to describe the strong 

interactions. While in their present incarnation strings have gone far beyond such 

matters, they might still be of value in describing low energy physics. 

In this note I summarize some recent work done in applying string models to 

QCD. At the outset, I confess that there is no effort made to derive a string model 

from first principles, in the large N limit or otherwise. For the most part my interest 

is merely in applying strings to problems where they obviously apply ss an effective 

theory of QCD. The classic example is the flux sheet formed by infinitely massive 

quarks - the Wilson loop. Neglecting its thickness, over large distances it should 

be reasonable to describe the flux sheet by the purely geometrical variables of the 

string. I do not apply strings to systems like light quarks, where it is not apparent 

how a string picture might arise. 

This revival of string theory in the strong interactions was motivated by a new 

string model proposed last year by Polyakov;’ essentially the same theory had been 

proposed over a decade ago by Helfrich,z as a model of interfaces. In this string 

theory the action contains not only the usual Nambu term but a novel term that 

involves the extrinsic curvature of the surface. 

Viewing this theory of surfaces as just another Euclidean field theory shows why 

it is essential to include the curvature term. The coupling of the curvature term 

is dimensionless, so the renormalization group instructs us that it is a (marginal) 

operator whose effect cannot be neglected. The coupling of the curvature term is 

asymptotically free,‘J-b so its effects are dominant in the ultraviolet lit. 

There is a simpler and more physical reason, though, why such a term should be 

included. If the dynamics of a flux tube is controlled only by the Nambu term, the 

flux tube has an extraordinary property: ss long as its length is the same, we can 

twist it any which way we can without changing the action. This contradicts the 

intuition that it should cost effort not only to stretch the flux tube lengthwise but to 

bend it sideways. The resistance t&ending is controlled by the extrinsic curvature, 

for bending necessitates describing how the surface is embedded in space-time. The 

simplest example of this is a cylinder, which has no intrinsic curvature and yet is 

bent in one direction. Because the curvature term acts to smooth out the world 
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sheet, I refer to it as a smooth string. 

The curvature term dramatically changes things. For the Nambu action, with 

the proper choice of gauge the theory is free on the world sheet. Smooth strings 

have complicated interactions in any gauge which can be strongly coupled in the 

infrared. On the other hand, the extrinsic curvature term does not possess the local 

conformal symmetry of the Nambu action. Without conformal symmetry there is 

no reason for there to be a critical dimension, and so the quantum theory of smooth 

strings should be consistent in a wide range of dimensions, including four. 

I begin my discussion not with smooth strings, but with what John Stack and 

I call “heavy” strings, where very massive fermions rue attached to the ends of a 

rotating string.s The long-distance part of the spin-dependent potential is obtained 

by solving for the classical motion of a rotating string. This quantity is of experi- 
mental significance, and cannot be calculated directly in any model except that of 

heavy strings. 

For heavy, open strings, it turns out that even if a curvature term is added to 

the action, it does not affect the classical solutions we use. To obtain a consistent 

quantum theory in four dimensions, however, a curvature term must be included. 

Turning to smooth strings, Ifirst describe the calculation of the static potential 

by Eric Braaten, S.-M. Tse, and I.’ Rather easily, the leading behavior of the static 

potential at both large and small diitances can be computed. If R is the distance, 

for both large and small R there are terms - l/R in the static potential whose 

coefficients depend only upon the dimension of space-time, but not on the coupling 

of the curvature term. While the behavior of the static potential at small distances 

is certainly not of much relevance to QCD, this is important in establishing that 

the static potential for smooth strings avoids a pathology that occurs when just the 

Nambu action is used. 

The next topic is an exercise: in the same way that Helfrich and Polyakov 

introduced theories of smooth surfaces, I investigate a model of smooth paths.* The 

action for a path in d space-time dimensions involves not only its length but its 

curvature. The theory can be solved in the limit of infinite d, with an unusual 

solution - an action that starts out with a non-polynomial form ends up looking 

like a theory with long-range interactions. 
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I conclude by addressing some general questions concerning smooth strings.Q 

While there is no reason to expect a critical dimension, it is still reasonable to ask 

if the model is well-behaved in all dimensions. In particular, somewhere in smooth 

strings should be buried the usual Liouville action that appears in the quautisation 

of the Nambu string.1° But the Liouville action only makes sense if the dimension of 

space-time, d, is less than 26 - so are smooth strings sensible if d 1 28? Answering 
this question involves understanding the role of ghosts, the conformal anomaly, and 

the like. 

II. Heavy strings 

QCD strings represent an effective theory which remains after the gluonic de- 

grees of freedom have been integrated out. How do matter fields appear in such a 

string theory? 

There is an essential difference between matter fields in the fundamental repre- 

sentation and those in the adjoint. Here I rely upon intuition gained from the large 

N expansion of an SU(N) gauge theory. If the fermions lie in the fundamental 

representation, as N becomes large the N fermions are sparse relative to the N2 - 1 

gluons. Mesons can always be characterized by a definite number of fermions, which 

act as sources or sinks for Z(N) flux. Thus fundamental fermions are attached to 

the string only at isolated points along it. Shortly I show that to consistently attach 

matter fields to a string at isolated points requires that they live exclusively on the 

ends of the string. 

The string theory is very different for matter fields in the adjoint representation. 

At large N any adjoint fields are ss plentiful as the gluons themselves, so it only 

seems natural that the string should be composed of the matter fields as much 8s 

they are of gluons. This is done by letting the matter fields reside along the entire 

length of the string. 

Strings with matter fields along their length are most familiar in string theory, 

but strings with matter on the ends-have been studied.” Putting fermions on the 

ends leads to a theory originally proposed by Bars.‘r 

I note that unlike other possible string theories there is no color label attached to 

the matter fields. After all, the string itself is formed from the gluons and yet carries 
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no explicit color index, so why should the matter fields? Attaching explicit color 

factors to the matter fields would s- to be overcountingfor QCD strings. All that 

is required of the matter fields is that they have the same Lorentz transformation 

properties as the original fields. 

I take the Nambu action for the string, 

Linr = cc /~(~.2’)2-~2(=1)2dOdr+... 

To obtain a consistent string theory in four dimensions a term for the extrinsic 

curvature must be added to the string action. For the classical solutions of interest 

here, however, the effects of the curvature term are negligible (following Curtright 

et a&i3 ss discussed in the next section). 

I assume that space-time has a Minkowski signature. This is done only as a 

matter of expediency, to make it easier keeping track of the signs. The coordinate 

z = z”(u,r) represents the embedding of the world-sheet in four Miowski di- 

mensions, with signature (+ - - -). The Lorentz index (I on z” is often dropped: 

5 = a~“/&, z’ = &P/&r. The world-sheet is parametrized by o and r, with r 

a time-like variable of infinite extent, while o describes the spatial extent of the 

string, 0 : 0 + x. The string tension equals P. The Nambu action is invariant 

under arbitrary reparametrisations, u + Z(cr,r) and r -+ ?(u,r), subject to the 

condition that the length of the string is always equal to rr, 

aa 

( > 
z =o. 

u3a.r 

I start by adding scalar particles to the string. By the stated philosophy they 

are attached only at isolated points along the string. Suppose the action for the 

scalar of msss m has the usual form, proportional to the length of its world-lime: 

S da, = m I ~=, Gdr, (3.3) 

In general, this action breaks the reparametrization invariance of the original string 

action, for it picks out a preferred point in u along the string. Mathematically, i: 

transforms inhomogeneously under an arbitrary reparametrization: 

aG az a? a2 
=+~~f~~’ (3.4) 



It is easy to preserve reparametrisation invariancesimply by restricting the scalar to 

live exclusively on the ends of the string, u = 0 or s. Because of the restriction that 

the length of the string is fixed, eq. (2.2), at the ends i transforms homogeneously 

under repsrametrizations, which are just reparametrizations of r. 

In other words, the boundary conditions of an open string automatically treat 

the ends as special points, so matter fields can be added there without upsetting 

the repsrametrization symmetry. Having constructed a meson in this way, baryons 

are for by tying open strings together. These simple arguments also lead to 

conclusions about glueballs, which are represented by closed strings. As closed 

strings have no preferred point along their length, in a string model it is not possible 

to form “mixed” states composed of quarks and a glueball. 

Eq. (2.3) is the invariant action for a scalar field propogating in a curved, one 

dimensional manifold with a metric tensor gm = il. To introduce fermions on the 

ends the ein-bein eg = P is used. The invariant action for a fermion of mass m at 
u = x i$2.‘4 

with a similar term for the fermion at the other end of the string; zr:=x - zr;. The 

fermion field + is a Dirac spinor under Lorentz transformations but a scalar under 

reparametrisations of r. 

The action of eq. (2.5) was first written down by Barsi and studied by hi, 

Kikkawa, Sate, Burden, Tassie, and others. i4 While we build on these results, in a 

fundamental way we differ from ref. (14) in what should be calculated to determine 

the spectrum of bound states in this theory. 

The first thing to do is to determine the equations of motion. I just write that 

D+Y,!I = -ig&- &(&)++=O. (2.6) 

While eq. (2.5) is the most na.tural action for a fermion at the end of a string, 

it is but the simplest of an infinite class. For example, if a term such as 

(2.7) 
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is added to the action, for large fermion masses the spin density if multiplied by 

1 + IFS. Thus eq. (2.7) shows how to write UI anomalous magnetic moment for the 

fermion in terms of string variables. 

As I said before, it is not clear to me that string models should be used for 

light quarks. Though for no good reason, it is still interesting to consider how to 

introduce massless fermions. I argue in analogy to scalar fields in two dimensions, 

where the scalar field is dimensionless, and the critical behavior is governed by a 

non-linear model. Fermion fields in one dimension (as on the ends of a string) are 

dimensionless, so perhaps their critical limit is also controlled by a non-linear model. 

Thus for massless fermions we propose that the action is the same as in eq. (2.5), 

but subject to the constraint 

@!4’ + (ih5ti)2 = $ 

As appropriate to massless fermions, the constraint and the original action are both 

chirally symmetric. In the constraint e2 is a dimensionless coupling constant which 

we speculate is asymptotically free. 

In applying a string model to a meson composed of very heavy quarks, the 

fermion action of eq. (2.5) should be used. We computed the potential between 

heavy fermions on the end of a string in this case. The end at u = 0 is nailed 

down by making the fermion at that end infinitely massive; the fermion at u = rr 

has mass m. To work in a limit where a string picture certainly applies, we take 

the fermion msss to be much larger than the mass scale set by the string tension, 

m > fi. In this lit the simplest possible motion is one fermion encircling the 

other at constant angular velocity. The total energy of the fermion plus the string 

is 
- b 

E=+~~+rn+~r+~~, 

where v is the magnitude of the velocity for the rotating fermion, 1 = mrvi its 

angular momentum, and s’ its spin. 

Eq. (2.9) reproduces the results of Kikkawa, Sate, Burden, Tassie, and others,” 

extrapolated to the non-relativistic lit. They argued that the spectrum of bound 

states can be extracted from the energy: we disagree. Following a similar treatment 

of spin-dependent effects in QCD by Eichten and Feinberg,i5 to determine the 
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spectrum it is necessary to evaluate the propagator for the fermion at the end of a 

string. It turns out that for large fermion mess this doesn’t make a difference until 

one gets to the spin-orbit terms, which as in are eq. (2.9) are small, - l/m*. 

Evaluating the fermion propagator gives a rather remarkable result. The fermion 

propagator is given by l/D+, eq. (2.6). Define D- from eq. (2.6) by taking the 

opposite sign for the fermion mass, and form the product of D+ and D-: 

-D+D- = (&(a,+$$))2+m2. (2.10) 

There is a very easy way of proving this relation. Begin by assuming that i.2 is a 

constant; then it is only necessary to keep track of the terms lie [+‘,q. To show that 

it is true for arbitrary 59, observe that since D+ and D- are each reparametrization 

invariant, their product must be as well. But it is not to difficult to show that 

eq. (2.10) is already in a form that is manifestly reparametrization invariant. The 

essential point is that while 9 transforms inhomogenously under reparametrizations 

of r, the combination [$, 31 transforms homogenously. Thus eq. (2.10) is correct 

for arbitary 5~“. 

Eq. (2.10) shows that squaring the inverse fermion propagator produces an 

inverse propagator that looks like that for a scalar field coupled to a background 

gauge field A,, 

(2.11) 

Except for the appearance of A,, D+D- is the right covariant laplacian for a scalar 

field propagating in a curved, one-dimensional manifold with metric go0 = k2. Of 

course, in this string model A, is not really a gauge field - it just looks like one. 

As shown by Peskin,i6 since l/D+ = (l/D+D-)I)-, it is only necessary to 
evaluate the scalar type propagator l/D+D-. Following Feynmsn,i6 the scalar 

propagator is written as a path integral: 

G= ~=jomd~tj[dr]ezp(-iS~) 

where S, is the action 
- 

(2.12) 

(2.13) 
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This sum over paths looks familiar, but in fact the variables are rather different 

from what one is used to. In the path integral, the sum over paths is over those in r 

space, not in z space; the z coordinates are just other variables which are implicitly 

determined by the string equations of motion. Similarly, E and & are, respectively, 

the proper time and total proper time for the paths in r space. 

From eq. (2.13), the only place where the spin of the fermion enters explicitly 

is in the term which looks like a “Wilson loop” for A,, ezp(-iJA,dr). Otherwise, 

the path integral is that for a scalar particle in a background z field. 

Using this representation for the fermion propagator, it is easy to determine the 

potential energy: 

V,tring(r) = m + fir - 2 :. (2.14) 

Compare eqs. (2.9) and (2.14): the rest mass of the fermion and the linear potential 

of the string are the same, but the sign of the spin-orbit term is opposite to that 

found from the energy. This difference can be understood from the discussion of 

spin dependent effects in QCD by Eichten and Feinberg.15 In a basis in which the 

upper part of the fermion wave-function is large, the propagation of the fermion 

includes virtual transitions from the upper to the lower part, and back again, that 

are missed by the energy. 

The sign of the spin-orbit term is a quantity of experimental significance. The 

sign in eq. (2.14) was first argued to hold in QCD by Buchmiiller,l’ on the basis of 

an intuitive physical picture. This result was also argued by Gromes,r* who used a 

general formalism of Eichten and Feinberg.15 

Further, data from heavy quark spectroscopy and from Monte Carlo simulations 

support the sign found in eq. (2.14). Thus we cannot claim that our derivation of 

the spin-orbit term in the string model gives anything other than the expected 

result. Even so, given the importance of this term we think it worthwhile to have 

a model in which it can be calculated analytically. 

The origin of the sign flip for the spin-orbit term between eqs. (2.9) and (2.14) 

is not transparent when the fermion propagator is evaluated by the path integral 

method. A more direct method has been worked out by John Stack,rQ in analogy 

to the approach of Eichten and Feinberg. I5 This involves identifying what the field 

stength is in terms of the string variables and being very careful in evaluating 
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quantities on the ends of the string. 

In all of these considerations only classical solutions of the string enter. To 

be consistent, one should consider expanding in quantum fluctuations about these 

classical fields; this would generate corrections N I/(m2r3) to the spin-orbit term 

of eq. (2.14). Since the quantum string with either msssless or infinitely massive 

endszo is only consistent in twenty-six dimensions, it should be true as well for 

ends that have a finite but non-eero mass. Showing this is completely opaque in 

a canonical formalism but trivial in the functional appr0ach.s Hence to consider a 

consistent string theory in four dimensions I turn to the extrinsic curvature term 

and smooth strings. 

III. Smooth strings 

The action for smooth strings is 

S ,mooth = & / d2r (,,& (AZ)’ + iA* (a,,~. &z - 9.6)) f p/ d2z &, (3.1) 

where A is the covariant laplacian for the metric gd, 

AZ= +a (&Lfbab) =. (3.2) 

The vector z = z”(P) describes the embedding of the surface in d Euclidean dimen- 

sions. The space-time metric is positive definite; the corresponding index n is often 

suppressed. Instead of parametrizing the world-sheet by the Mmkowski variables u 

and r, henceforth I use the Euclidean variables I’, a = 1,2. 

The fist term in eq. (3.1) is the curvature term. This can be reexpressed as an 

integral over the square of the second fundamental form for the surface.’ While this 

makes the underlying geometry transparent, the above form is more convienient for 

calculation. In the second term Xnb is a constraint 6eld which fixes the metric to 

be that intrinsic to the surface, gab = &z. &z. The last term is the usual Nambu 

action. 

Both z and z are lengths and so have dimensions of inverse mass. Counting 

dimensions shows that the coupling of the curvature term, (r, is dimensionless, while 

the string tension p has dimensions of (mass) 2. As a theory with a dimensionless 
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coupling constant it should be renormaliiable. Explicit calculations to one loop 

order show that it is also asymptotically free.‘*3-6 

Using the value for g,,(, the Nambu term is equal to 

g / d2Z fig& aaz. a@ . 

P01yakov~~ first noticed that for the Nambu model it is possible to start just with 

the action of eq. (3.3); gab is fixed to be proportional to the intrinsic metric by the 

equations of motion. This is not possible for the action of eq. (3.1) - for smooth 

strings it is essential to introduce an explicit constraint to enforce this relation. As 

will be seen in sec. VI, the presence of the constraint field Xob complicates the model 

enormously. 

For the Nambu action of eq. (3.3) the metric gd only has to be proportional to 

the intrinsic metric, not equal to it. This is because there is a local conformal sym- 

metry of gd + ezp(4) gob. In two dimensions the combination fig” is conformally 

invariant, so the curvature term transforms simply, 

&i (W’ -, e-* fi (Az)~, (3.4) 

but it is not conformally invariant. In the Nambu model explicit conformal symm+ 

try in the quantum theory requires that the dimension d = 26. For smooth strings, 

there is no conformal symmetry to begin with and so they should be consistent in 

a wide range of dimensions. 

At the outset one aspect of smooth strings should be emphasized. Unlike Nambu 

strings, smooth strings involve higher derivatives on the world-sheet. This means 

that in Miiowskispace-time they will inevitably be plagued with the usual diseases 

of higher-derivative theories, such as ghosts, acausality, and a lack of unitarity.21 

Smooth strings are still a perfectly good field theory in Euclidean spacetime. 

The class of sensible Euclidean field theories is far larger than their Miiowski 

cousins, for matters such as unitarity and the like do not constrain the behavior of 

correlation functions in Euclidean space-time. 

For this reason smooth strings cannot play a role in unified theories, but it is 

still perfectly good as in effective theory of the strong interactions. As with any 

effective theory it should only be applicable over distances much larger than the 



-ll- FERMILAFI-Conf-66/171-T 

scale set by the fundamental dynamics, which is determined here by the underlying 

theory of QCD. 

The equations of motion for smooth strings have been studied by Curtright, 

Ghandour, Thorn, and Zachos. l3 Without writing them out in detail it is possible to 

make a simple but useful observation. Under an aribitrary variation 6 the curvature 

term becomes 

6 (& (AZ,‘) = AZ (AZ 6 (,/?) + 2 &6 (WI. (3.5) 

The equations of motion for the Nambu model are simply AZ = 0, so by eq. (3.5) 

the variation of the curvature term automatically vanishes when this is true. That 

is, on the world-sheet any solution of the Nambu string is a solution for smooth 

strings as well. The converse does not hold. 

There is a caveat attached to this: the string had better not have any sin- 

gularities which would produce a divergent curvature term. This is essential for 

understanding closed strings, I3 but is of no concern for open strings. 

This observation can be used to conclude that the results of the previous section 

apply to strings that are smooth ss well as heavy. As appropriate to my caution 

above the calculations should really have been done in Euclidean space-time, but 

this requires no effort. 

There are terms not written in eq. (3.1) which are only sensitive to the global 

topology of the surface. In any diiension d it is always possible to add J fiR, R 
the Ricci scalar, to the action; this quantity is proportional to the Euler character- 

istic of the surface. There is another topological invariant which is unique to four 

dimensions:’ 

V = $ J d2Z &g” @ a&g a&, (3.6) 

with 

t - f a.~, abza. 
=19- fi 

(3.7) 

The quantity Y is an integer, measuring how many times a surface embedded in four .- 
dimensions intersects itself.‘*22 Thus a 0 term, i 0 V, can be added to the action. 

Polyakov’ suggested that lie other theories with a 6 term, it is possible that 

when 0 = K smooth strings have a non-trivial infrared stable fixed point in Q. If 
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so, about thii fixed point the correlation length of smooth strings could always be 

tuned to be much larger than the characteristic scales of QCD: hence the effective 

theory of strings in QCD might be determined by this fixed point. 

My concerns here are more modest, in trying to calculate certain basic quantities 

from a theory of smooth strings. It is not that I would not like to use Polyakov’s tl 

term - rather, if this tlxed point exists it is surely in strong coupling, inaccesible 

by pedestrian techniques. 

The Y term can be generalized to other dimensions. For dimensions greater than 

four its coefficient would have dimensions of inverse mass and violate renormaliz- 

ability. In contrast, in three dimensions the term 

$ 
I 

d’z &Pas AZ, tg6 (3.8) 

can be added to the action. As the coefficient < has dimensions of msss renormai- 

izability is not disturbed. 

Eq. (3.8) can be rewritten in another way. In any number of dimensions the 

identity 

Aza n; = K;, gob P-9) 

ho&r3 nh is a normal vector to the surface and Ki, the second fundamental form, 

with the index i running over the d - 2 normal directions. What is special to three 

dimensions is that the normal at each point is uniquely defined, no = Ha tbs/2, so 
eq. (3.8) becomes 

f / 82 &K.b gab. (3.10) 

Eq. (3.10) is only invariant in three dimensions, where the index on the normal 

direction can be dropped from KL. 

In this form the 5 term is familiar from the study of interfaces.rJ Remember that 

the curvature term can be written as the square of the second fundamental form, 

- J dzz fi (KL)2. The quantity < can have either sign, and acts lie a mass term 

for a scalar field. The curvature Kib plays the role of the scalar: when < is negative 

the surface spontaneously curves up, with Kib developing a vacuum expectation 

value, while for positive c the surface tries to remain flat. The critical points where 

< and/or p vanish are of interest for the study of interfaces. 
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These and other parity odd terms are also induced by massless fermions prop- 

agating on the world sheet. For examples, see the works of Masur and Nalr” and 

Kavalov, Kostov, and SedrakyarP. 

IV. The (smooth) static potential 

One of the first things required of a theory of flux sheets is the behavior of the 

static potential. Eric Braaten, S.-M. Tse and I have shown that it is simple to 

extract certain universal terms for the potential computed from smooth strings.? 

This problem has also been considered by Olesen and Yang.2’ 

Choose a physical gauge in which the coordinates of the flux sheet are equal 

to the physical distances in space and time, .zr = r and z2 = t; the length of the 

flux sheet is much greater than its width, T > R. In this physical gauge it is only 

necessary to integrate over the d - 2 transverse degrees of freedom, zt,. To one loop 

order 

so integration over zt, gives 

(4.1) 

.%m.tt, = PRT+ 
d-2 
- tr log 

2 

with m2 = a~. 

The transverse fluctuations must vanish at the sides of the flux sheet, z,,(R) = 
~~~(0) = 0, which defines the trace. To discuss eq. (4.2) it helps to thii of the 

system as if it were at a finite temperature ?’ - l/R. This analogy is not precise, 

for at finite temperature the fluctuations only need be periodic in l/F’, but it is 

good enough for my purposes. 

For any distance R the massless modes in eq. (4.2) give 

tr log (-a2) = -f--, 

which is like the free energy of a massless gas at a temperature T. The massive 

modes give a contribution that depends on R in an involved way. At high temper- 

atures the free energy of a massive gas approaches that of a massless gas, so for 
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small R 
tr log (-a2 + ml) - tr iog (-a’) (4.4) 

For large distances the massive modes act like a massive gss at low temperature. 

Thus there is a contribution at zero temeprature = c m2 R T (where c is some 

constant) and a zero-point (free) energy - mT. That’s it, for at low temperature 

the free energy of a massive gas has the usual Boltzman form, ezp(-mm/F) = 

ezp(- m R), which is completely negligible at large R. 

The static potential is V(R) = S,,,-tt,/T, so at large R 

a(d - 2) 
V(R)-~,,,Rfb- 24R +.... 

The free energy at zero Yemperature” produces a renormalized string tension prrn = 

/.L + c m2 = ~(1 + c o) , while the zero point energy V, - m - \/&is. At small R 
both the massless and the massive modes contribute the same amount to give a 

l/R term twice that at large R: 

V(R) u -“y2i2) +.... (4.6) 

So what? At large R the l/R term is just that familiar from Liischer, Symansik, 

and Weisz,26 while that at small R is obvious after a little thought. But why should 

there be much significance to this trivial calculation? 

Because the l/R terms at both large and small R have coefficients that are 

exact: although there is a dimensionless coupling constant floating about, these 

terms are not renormalized by Q. Moreover, eq. (4.6) is the dominant term at small 

R. 

The exactness of the l/R term at large R follows from the old analysis of 

Liischer,rs who argued that this term should be universal in any string model. 

In the context of the present model his conclusion is all the more remarkable, for 

while both the string tension and the zero point energy are renormalized order by 

order in perturbation theory, the l/R term (at large R) is not. 

The argument at small R is very diEerent. Here I return to the analogy at finite 

temperature and ask for how the free energy behaves at high temperature. The 

system acts as an essentially massless gas with non-ideal corrections in Q. Since 
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the coupling is asymptotically free, however, the gas approaches the ideal limit as 

T + m, with corrections - ~/IO&): 

V(R) c- - lrd2;p2) 
(l+&) +--. (4.7) 

at small R where a is some constant that depends only upon the dimension d and 

not upon the coupling Q. 

As with any general argument it should only be believed after it is checked 

explicitly. Eric Braaten and S.-M. Tse2’ have carried out involved calculations to 

two loop order at large d to verify these arguments. This is especially important 

for the l/R term at large R, for it is only at two loop order that non-universal 

corrections would first show up; Braaten and Tse iind they do not. 

Thii result is in contrast to that obtained from the Nambu model. A calculation 

by Alvarez2* at large d and by ArvisZo in d = 26 give the same result: 

V~ombu(R) = PR l- s, /- (4.8) 

R,’ = s(d - 2)/(12~). Expanding about large R gives pR plus the Liischer term, 

but for R < R, the potential is imaginary. Arvii20 showed how the imaginary part 

of VN-* is related to the tachyon of the 26diiensional bosonic string. 

We have not been able to compute the static potential for smooth strings over all 

distances (even in the limit d + oo), but there is no reason to suspect any pathology 

lie that of Nambu strings. Over intermediate distances the static potential will 

certainly depend upon a in a complicated way, but given the behavior it must obey 

at small and large R, V,molh can only grow monotonically in a rather uninteresting 

way. 

To be consistent in its interpretation as an effective theory, V,,,, should only be 

taken seriously over large distances. At short distances the static potential in QCD 
is controlled not by strings but by perturbation theory. Indeed, at short distances 

strings give a potential l/R for any d, while single gluon exchange gives 1/Rde3; it 

is only an accident that even the powers agree in four dimensions. 

Pushing coincidence beyond the liits of reason, I observe that the Cornell 

model,2g which fit chsrmonium spectroscopy with a potential pR + n/R, found 
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a best fit for a value )I: = 52. Making the unjustified assumption that n should 

be taken from K,,,.,,,th at small R gives n = x(d - 2)/12 or k 1: .524.. . in four 

dimensions. 

Of course it would be preposterous to claim this numerical agreement as a phe- 

nomenological success of string theory. 

But it is. 

V. Smooth paths 

As the addition of a curvature term tends to smooth out surfaces, so it is possible 

to produce Smooth paths ” .s I fmd thii exercise of interest because of the unusual 

solution it has in the limit of high dimension. This model has also been studied by 

Alonso and Esprius. 

Let z represent a path in d flat, Euclidean dimensions. As a path, z is a function 

of a single parameter t, 3 = E(t). I wish to construct a type of one-dimensionalgrav- 

ity, where the action is invariant under arbitrary reparametrisations of 1, t + z(t). 

This can be done by dealing only in quantities that are manifestly reparsmetrisation 

invariant. 

The fundamental invariant is the arc length s, which is defined by the relation 

that &/ds be the tangent vector of unit norm, (&/d.~)~ = 1. The arc length is 

cleatly invariant, for with a given parametrization t, ds = &$$dt. 

Any action constructed only from z and s will automatically be invariant as 

long as the parameter t doesn’t appear explicitly. For the action I take 

Both z and s have dimensions of length, so a is a dimensionless coupling constant; 

m is a mass, m 2 0. 

The last term in the action typical for a relativistic particle of mass m. The first 

has a geometric interpretation: at a given point the curvature of a path is given by 

k=,/M, so the first term in eq. (4.1) is the total c-ture of the path. 

This action is unusual ln that it is non-polynomial, involving k and not k2. I choose 
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eq. (4.1) so that the coupling of the k term is dimensionless, lie that of smooth 

strings. 

Theories of paths naturally have relevance for polymers in dilute solutions0 

Because thii action is non-polynomial in z it probably is of limited significance for 

polymers; at best it applies only to an isolated point in the phase diagram. As a 

field theory, however, it does exhibit some novel features. 

There is one aspect special to paths in three dimensions. As defined above k 
is the absolute curvature, and is positive semi-definite, k 2 0. In three dimensions 

it is possible to define a signed curvature, k,, whose magnitude is equal to k but 

which can have either sign. The integral of this signed curvature (over ds) is,a 

topological invariant, proportional to the number of self-intersections of a curve 

with itself. Thus the curvature term of eq. (4.1) is an integral over the absolute 

value of k,. There is no signed curvature is more than three dimensions, with the 

absolute curvature the only invariant. 

To calculate it is convienient to use reparametrization invariance to choose a 

gauge in which the curve is parametrized directly by the arc length. In this arc 

length gauge, local properties of the theory are determined by the Lagrangian 

+@+~ (g-1)) 

with w = w(s) a constraint field to enforce the gauge condition; & = &Ids and 

5 = d%/aY. Unlike the original action there is no trace left of the mass m: the 

term mlds only contributes to the total free energy and does not affect the local 

dynamics. This is in contrast to theories of surfaces, where in conformal gauge the 

Nambu term remains to affect the local equations of motion. 

Dropping the mass as in eq. (5.2) shows that the theory has not one dimension- 

less coupling constant and one mass parameter, as first appeared from eq. (5.1), 

but just one dimensionless coupling constant. Eq. (5.2) has the form of a non-linear 

sigma model, with 2 acting ss the d-component sigma field. The kinetic energy for 

the sigma field 2 is unusual in that it is the square root of what one would expect, -,,-. 
5’. The language of the sigma model is helpful in discussing smooth paths. 

The theory is soluble for paths in a space-time of infInitely high die&on: 
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d 4 00 with cx d held fixed. To do this I use the following identity: 

/_rdA exp(-a’&;) =$xp(-2ab), 

for a > 0, b 2 0. This identity appears unremarkable. To prove it, the obvious 

thing is to expand about the stationary point in A, X2 = b/a. This gets the co- 

e5cient of the exponential right, but misses the important feature of eq. (5.3) - 

that the prefactor is independent of b. When corrections to the leading stationary 

point approximation are considered, it appears certain that they will introduce a 

dependence upon b. Nevertheless they do not; I leave the proof of eq. (5.3) as an 

exercise to amuse the reader. 

What’s so important about the prefactor ? I use this identity to rewrite the 

action of eq. (5.2) ss 

L’ = & x* + & $ + & w ($ - 1) . 

In this Lagrangian X is a function of s, X = X(s), which acts ss another constraint 

field. From eq. (5.3), integration over X should reproduce the original Largrangian. 

In doing this, I am sloppy about various constants that might appear in the measure 

of the integration, but because b does not appear in the prefactor of eq. (5.3), I 

am certain that curvature dependent terms will not. This is of crucial importance 

- if factors of $ did appear in the measure, they would surely alter the dynamics 

unless I was very careful to treat them properly. With the above identity, I can 

happily ignore this. 

The vector z only appears quadratically in eq. (5.4), so immediately it can be 

integrated out to give an effective Lagrangian, 

&,(&w) = &X2-&w+ 4 trp log G-‘(X,W) . 

The inverse propagator for the z field is G-l, 

G-‘(X,w) = D’ 

D = d/ds. The trace in eq. (5.5), trr, ls only over the momentum p, Da = -p*. 
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Having obtained this effective Lagrangian, it is amenable to the usual sort of 

approximation at large d. I expand X(s) and W(S) about fields A, and w,: X = 

A. + xpu, w = we + wpu. For A. and w, to give the true ground state at large d, the 

terms linear in A,. and ws, must vanish. This gives the equations 

(5.74 

(5.76) 

where I sssume that A, and w, commute with p. 

The type of solution typical at large d - A. and w, both constant-can be shown 

not to work. I have written eq. (5.7) so that its peculiar solution is apparent. Let 

w. be a constant, but take A, to be an operator in momentum space: A, = (-D*)‘l’. 
Within the trace, p’/Xa = lpj, and both equations give 

1 1 
- - tr 
czd p IPI +wc = 

0, 

which always has a solution for constant w,. 

To interpret this solution, I use the value for A, and w, to write what the La- 

grangian for the z’s is lie: 

t- $(-D*)‘l’i+ ;wc ($‘- 1)) 

To leading order in l/d, what started out looking out like a non-linear sigma model 

with a square root kinetic energy ends up looking lie a sigma model with long-range 

interactions. As shown by Brkzin, Zinn-Justin, and Le Guillou,31 sigma models with 

a kinetic term (-D’)‘/* = IpI have a critical dimension equal to one. 

The solution of eq. (5.8) is standard for a sigma model in its critical dimension. 

The coupling a is asymptotically free (this is true for all d > 1). Constant w, corre- 

sponds to the dynamical generation of mass in the disordered phase, and depends 

upon the renormalized coupling co~mtant according to dimensional transmutation. 

The value of w, does depend upon the boundary conditions applicable, such as the 

total arc length and whether the ends are held 6xed or allowed to wriggle freely. 
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The equivalence between smooth paths and a non-linear sigma model with long- 

range interactions breaks down beyond leading order in l/d. Both theories involve 

the constraint field w in the same way, but the constraint field X is special to smooth 

paths. Thus the theories differ at finite d when fluctuations in A,, are included. 

The integration over fluctuations in X introduces features that are not typical 

of sigma models in their critical dimension. The correlation length is always Snite 

in a sigma model. For smooth paths, at finite d there appears to be a logarithmic 

dependence on the total arc length +, l/d. Consider the expansion of D*(1/A2)Dz, 

which enters into the inverse z propagator and so the effective Largrangian, eqs. 

(5.5) and (5.6). Writing just the terms quadratic in A,, in momentum space, 

D*$D*= . . . + IP”I x,, - &bm+m~.u&~*.lP’l 

(5.10) 

The problem is the last term in eq. (5.10): it involves l/lpi in a virtual state, which 

in one dimension produces a logarithm of the total arc length. These infrared 

divergences do not worsen to higher order in A,,, so at finite d these logarithms 

could be tamed by working at finite total arc length with tied ends. 

VI. Smooth strings at large d 

Smooth strings can be solved when the number of dimensions, d, is very large.4*s*7*24 

I use thii to investigate whether smooth strings are well defined in more than twenty- 

six dimensions. For now I merely outline the calculation and present some partial 

results.9 

For metrics in two dimensions, by a general coordinate transformation it is 

always possible to specialize to a conformal gauge, gd = p&b. In this gauge the 

action of eq. (3.1) becomes 

s ,-.lh=~~d*=p((~a’=)*+i~(a.,.a,.-~s,)) 

f/d’w + Go&). (6.11 
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To be complete, the contribution of the Fadeev-Popov ghosts for general coordinate 

invariance is included in S,b,,. The ghosts only depend upon properties of the 

metric (and its meaSure in the functional integral), so S,,s,,,i is a function of p alone. 

Compare this action with that for a higher derivative sigma model (HDSM) 

which I proposed and studied a few years ago:*i 

where o is a d dimensional vector and Er a dimensionless coupling constant. The 

similarity between smooth strings (in conformal gauge) and this HDSM is obvious 

- the HDSM corresponds to a sum over flat surfaces, containing the dynamics of 

the constraint field X”’ but not that of the metric field p. Although related only in 

part to smooth strings, the calculations done in the HDSM are helpful nevertheless. 

For smooth strings the z’s appear quadratically in the action, so they can be 

integrated out to give the effective action 

&,(&A) = i tr log (:a* ($!a*) - ianAabab) 

+ s,,.,(P). 

In integrating over the z’s the only subtlety is that it must be done over the invariant 

measure on the world-sheet, J d*rp. 

For simplicity I assume that the world-sheet is an infinite disc, and expand about 

the obvious stationary point in p and X”: 

p=po (I+$$:), A”=: (-im@+/$iY). (6.4) 

At large d it is consistent to expand the action in powers of s and iab. Expansion 

to linear order 6xes po and m* in terms of the string tension JL and the coupling 

a, ss has been done by others.4*5v’*2’ I des tribe here what happens in expanding to 

quadratic order, where questions of stability can be addressed. 

To quadratic order in F and i, 

%f(P, 4 = Seff(PO, -im*/p0) 
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+;/d*z (;A-‘(2,&S+ 27,A-‘(j,j;) 5, + iA-‘(&;)i) + . . . , (6.5) 

A-‘(& i) = A-‘(i,;). Wherever possible the indices on the constraint field i are 

dropped. 

I begin with the diagonal term for the metric field, A-‘(& 5). To determine thii 

it is possible to ignore i and write 

1 =- 2 
I 

d*zsA-i&j); + 1.. , (6.6) 

The first two terms on the left hand side are identical to that in Polyakov’s formu- 

lation of the Nambu model and give the usual factor of the Liouville action.i” The 

last term on the left hand side is new, but for this term it is possible to expand 

perturbatively in 5. To express the result I introduce the dimensionsionless variable 

P, which is related to the magnitude of the momentum by P = pa/m*. Then 

A-‘(5,;) = - yP+2L,(P) 

where L,(P) equals 

4(P) = 4$-g 109 ( 
m+lD 

> @72-o. 
The first term in eq. (6.7) is the Liouville action, written in an unfamiliar way 

after resealing p and pulling out various constants. The second term is due to the 

integration over the massive mode. 

At high momentum, P > 1, all that matters is the part due to the Liouville 

action. 

A-%,~) 
d-26 

=--Pp+O (6.9) 

The cause of concern is that in more than twenty-six dimensions A-‘@, s) is nega- 

tive, so apparently the theory is unstable.’ 

Thii conclusion might be premature. While A-‘(&;) is negative, what is of 

significance are physical correlation functions. To determine these, it is not sufficient 
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to look just at the inverse propagators - the full propagators must be calculated. 

For example, in calculating the two-point function for s, both A-‘(F,s) and the 

off-diagonal components contained in A-‘(s,i) enter. These can and do change 

tllmgs. 

Getting the full inverse propagator is easy. The worst part of thii is A-l(T\,i), 

but this can be read off directly from the calculations done in the HDSM. The 

remaining term, A-‘(;, i), is simple to determine perturbatively. 

It is more difficult to determine the propagator from the inverse propagator, 

for in all there are eight scalar functions in the propagator - five for A(i, i), two 

for A(;,X), and one for A@,$). These can be disentangled using the results from 

the HDSM. I quote just the result for the propagator in the F - s channel at high 

momemtum (P S= 11: 

A(;,;) = +3 Plog*(P) + ... 
(6.10) 

At high momenta the off-diagonal components in the inverse propagator overwhelm 

the negative part of eq. (6.9) to give a propagator that is positive in this channel. 

This suggests that smooth strings are at least perturbatively stable in all (positive) 

dimensions. 

At infinite d the results from the HDSM can be used to investigate the stability 

of smooth strings not just at high momenta, but over all momenta. The solution 

shows that this can only be true lf the renormaliied value of ud is less than some 

critical value (ad is held fixed at large d). These calculations are left for another 

day. 
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